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Abstract 
In this paper we find bounds for the zeros of the sum of two polynomials whose coefficients are restricted 

to certain conditions in the framework of Enestrom-Kakeya theorem. 
 
Mathematics Subject Classification:   30 C 10, 30 C 15 
Keywords and Phrases:    Coefficient, Polynomial, Zero   

     Introduction  
A famous result giving a bound for all the 

zeros of a polynomial with real positive 
monotonically decreasing coefficients is the 
following result known as Enestrom-Kakeya theorem 
[2]: 
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Then all the zeros of P(z) lie in the closed disk 

1≤z . 

If the coefficients are monotonic but not positive, 
Joyal, Labelle and Rahman [1] gave the following 
generalization of Theorem A: 
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If P(z) and Q(z) are two polynomials whose 
coefficients satisfy relations of the type (1), then the 
question arises whether Theorem A holds good for 
the sum  
P(z)+Q(z) of the two polynomials. It is easy to see 
that if the two polynomials have the same degree, 
then the conclusion of Theorem A holds good. But if 
P(z) and Q(z) are not of the same degree, then the 
result is not true. For example consider the 

polynomials 1)( 2 ++= zzzP  and  

23)( += zzQ . Both satisfy the conditions of 

Theorem A and both of them have their zeros in 

1≤z . But 34)()( 2 ++=+ zzzQzP , 

whose zeros are -1, -3 with moduli 1 and 3 so that 

one  zero does not lie in 1≤z and the theorem fails. 

The same is true of the polynomials 

345)( 2 ++= zzzP  and 

78)( += zzQ . The modulus of each zero of  

P(z)+Q(z)  is 2 >1. In such cases , however, we prove 
the following result: 
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Then P(z)+Q(z) has all its zeros in the disk 
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    The bound of Theorem 1for the zeros of P(z)+Q(z) 
in the first example given above is 7 and 

7≤z contains both -1 and -3. Similarly the bound 

for the second example is 4.2 and 2.4≤z  contains 

both the zeros. 
     If we take Q(z)=0, Theorem 1 gives Theorem B. 
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Proof of Theorem 
Proof of Theorem 1: Let n=m+p, p>0 i.e.m=n-p.Consider the polynomial 
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For 1>z , we have, by using the hypothesis, 
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This shows that those zeros of F(z) whose modulus is greater than 1 lie in  
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But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Therefore , it 
follows that all the zeros of F(z) lie in the disk 
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Since the zeros of P(z) are also the zeros of F(z), the result follows. 
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