FLIESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Zeros of the Sum of Two Polynomials

M. H. Gulzar

Department of Mathematics,University of Kashmir, Srinagar, India

ksuganya2002@yahoo.com

Abstract

In this paper we find bounds for the zeros of the sum of two polynomials whose coefficients are restricted to certain conditions in the framework of Enestrom-Kakeya theorem.

Mathematics Subject Classification: 30 C 10, 30 C 15

Keywords and Phrases: Coefficient, Polynomial, Zero

Introduction

A famous result giving a bound for all the zeros of a polynomial with real positive monotonically decreasing coefficients is the following result known as Enestrom-Kakeya theorem [2]:

Theorem A: Let
$$
P(z) = \sum_{j=0}^{n} a_j z^j
$$
 be a polynomial

of degree n such that

$$
a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0 > 0.
$$

(1)

Then all the zeros of $P(z)$ lie in the closed disk $|z| \leq 1$.

If the coefficients are monotonic but not positive, Joyal, Labelle and Rahman [1] gave the following generalization of Theorem A:

Theorem B: Let $P(z) = \sum_{n=1}^{\infty}$ = = *n j* $P(z) = \sum a_j z^j$ $\mathbf{0}$ $(z) = \sum a_i z^i$ be a polynomial

of degree n such that

$$
a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0.
$$

Then all the zeros of $P(z)$ lie in the closed disk

$$
|z| \leq \frac{a_n - a_0 + |a_0|}{|a_n|}.
$$

If $P(z)$ and $Q(z)$ are two polynomials whose coefficients satisfy relations of the type (1), then the question arises whether Theorem A holds good for the sum

 $P(z) + Q(z)$ of the two polynomials. It is easy to see that if the two polynomials have the same degree, then the conclusion of Theorem A holds good. But if $P(z)$ and $Q(z)$ are not of the same degree, then the result is not true. For example consider the

polynomials $P(z) = z^2 + z + 1$ and $Q(z) = 3z + 2$. Both satisfy the conditions of Theorem A and both of them have their zeros in $|z| \leq 1$. But $P(z) + Q(z) = z^2 + 4z + 3$,

whose zeros are -1, -3 with moduli 1 and 3 so that one zero does not lie in $|z| \leq 1$ and the theorem fails. The same is true of the polynomials $P(z) = 5z^2 + 4z + 3$ and

 $Q(z) = 8z + 7$. The modulus of each zero of $P(z)+Q(z)$ is $2 > 1$. In such cases, however, we prove the following result:

Theorem 1: Let $P(z) = \sum_{n=1}^{\infty}$ = = *n j* $P(z) = \sum a_j z^j$ 0 $(z) = \sum a_i z^i$ and

 \sum = = *m j* $Q(z) = \sum b_j z^j$ 0 $(z) = \sum b_i z^i$ be polynomials of degrees n and

m (n>m) respectively such that

$$
a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0
$$

$$
b_m \ge b_{m-1} \ge \ldots \ge b_1 \ge b_0.
$$

Then $P(z) + Q(z)$ has all its zeros in the disk

$$
\left|z\right| \leq \frac{a_n + \left|b_m\right| + b_m + \left|a_0\right| + \left|b_0\right| - a_0 - b_0}{\left|a_n\right|}.
$$

The bound of Theorem 1 for the zeros of $P(z) + Q(z)$ in the first example given above is 7 and $|z| \leq 7$ contains both -1 and -3. Similarly the bound for the second example is 4.2 and $|z| \leq 4.2$ contains both the zeros.

If we take $Q(z)=0$, Theorem 1 gives Theorem B.

http: // www.ijesrt.com**(C)***International Journal of Engineering Sciences & Research Technology*

Proof of Theorem

Proof of Theorem 1: Let n=m+p, p>0 i.e.m=n-p.Consider the polynomial

$$
F(z) = (1 - z)(P(z) + Q(z))
$$

\n
$$
= (1 - z)[a_n z^n + a_{n-1} z^{n-1} + \dots + a_{n-p+1} z^{n-p+1} + (a_{n-p} + b_{n-p}) z^{n-p} + \dots + (a_{n-p-1} + b_{n-p-1}) z^{n-p-1} + \dots + (a_1 + b_1) z + (a_0 + b_0)]
$$

\n
$$
= -a_n z^{n+1} + (a_n - a_{n-1}) z^n + (a_{n-1} - a_{n-2}) z^{n-1} + \dots + (a_{n-p+2} - a_{n-p+1}) z^{n-p+2}
$$

\n
$$
+ (a_{n-p+1} - a_{n-p} - b_{n-p}) z^{n-p+1} + (a_{n-p} + b_{n-p} - a_{n-p-1} - b_{n-p-1}) z^{n-p}
$$

\n
$$
+ \dots + (a_1 + b_1 - a_0 - b_0) z + (a_0 + b_0).
$$

For $|z| > 1$, we have, by using the hypothesis,

$$
|F(z)| \ge |a_n||z|^{n+1} - |(a_n - a_{n-1})z^n + (a_{n-1} - a_{n-2})z^{n-1} + \dots + (a_{n-p+2} - a_{n-p+1})z^{n-p+2} + (a_{n-p+1} - a_{n-p} - b_{n-p})z^{n-p+1} + (a_{n-p} + b_{n-p} - a_{n-p-1})z^{n-p} + \dots + (a_1 + b_1 - a_0 - b_0)z + (a_0 + b_0) |\n\ge |a_n||z|^{n+1} - |z|^{n}||a_n - a_{n-1}| + \frac{|a_{n-1} - a_{n-2}|}{|z|} + \frac{|a_{n-2} - a_{n-3}|}{|z|^2} + \dots + \frac{|a_{n-p+2} - a_{n-p+1}|}{|z|^{p-2}} + \frac{|a_{n-p+1} - a_{n-p} - b_{n-p}|}{|z|^{p-1}} + \frac{|a_{n-p} + b_{n-p} - a_{n-p-1} - b_{n-p-1}|}{|z|^p} + \dots
$$

+
$$
\frac{|a_1 + b_1 - a_0 - b_0|}{|z|^{n-1}} + \frac{|a_0 + b_0|}{|z|^n}
$$

> $|z|^{n}[|a_n||z| - \{a_n - a_{n-1} + a_{n-1} - a_{n-2} + \dots + a_{n-p+2} - a_{n-p+1} + a_{n-p+1} - a_{n-p} + |b_{n-p}| + a_{n-p} - a_{n-p-1} + b_{n-p} - b_{n-p-1} + \dots + a_1 - a_0 + b_1 - b_0 + |a_0| + |b_0|]$
= $|z|^{n}[|a_n||z| - \{a_n + |b_{n-p}| + b_{n-p} + |a_0| + |b_0| - a_0 - b_0\}]$
> 0 if
 $|a_n||z| - \{a_n + |b_{n-p}| + b_{n-p} + |a_0| + |b_0| - a_0 - b_0\} > 0$
i.e.

$$
\left|z\right| > \frac{1}{\left|a_{n}\right|}\left(a_{n} + \left|b_{n-p}\right| + b_{n-p} + \left|a_{0}\right| + \left|b_{0}\right| - a_{0} - b_{0}\right).
$$

This shows that those zeros of $F(z)$ whose modulus is greater than 1 lie in

$$
|z| \leq \frac{1}{|a_n|} (a_n + |b_{n-p}| + b_{n-p} + |a_0| + |b_0| - a_0 - b_0).
$$

But the zeros of $F(z)$ whose modulus is less than or equal to 1 already satisfy the above inequality. Therefore, it follows that all the zeros of $F(z)$ lie in the disk

$$
|z| \leq \frac{1}{|a_n|} (a_n + |b_{n-p}| + b_{n-p} + |a_0| + |b_0| - a_0 - b_0).
$$

Since the zeros of $P(z)$ are also the zeros of $F(z)$, the result follows.

http: // www.ijesrt.com**(C)***International Journal of Engineering Sciences & Research Technology* **[980-982]**

References

- *[1] Joyal, S. Labelle and Q.I.Rahman, On the Location of Zeros of Polynomials, Canad. Math. Bulletin 10(1967), 55-63.*
- *[2] M.Marden, Geometry of Polynomials,Math. Surveys No. 3, Amer. Math Society(R.I. Providence) (1996).*